Practical hints for helping to manage brain trauma

Since the recent story on CNN (“He’s going to be better than he was before,” Jan. 18, 2014,) about the extraordinary recovery of Grant Virgin from severe brain trauma, I have gotten a lot of requests for information. Since I have been doing this protocol for more than seven years after first working with Dr. Julian Bailes on the equally remarkable recovery of Randal McCloy Jr. (the sole survivor of the Sago mine disaster in 2006) and others (1,2), I can offer some broad guidelines. Make no mistake, each case is different, but these guidelines will considerably help your decision-making process.

What Type of Fish Oil to Use

Purity

When is comes to treating brain trauma, purity and potency of the omega-3 product count. All fish and all fish-oil products are contaminated with various toxins. The most important is polychlorinated biphenyls or PCBs. These are known neurotoxins. It makes little sense giving someone a fish-oil product that is rich in PCBs. One of the dirty secrets of the fish-oil manufacturing industry is that it is extremely difficult to remove PCBs from a final product. In fact, it is so difficult, the industry tries to ignore it. Making a statement that a fish-oil product is free from PCBs is an outright lie. It is equally ridiculous to state that the PCBs levels in its products are lower than the international standards. Those international PCB standards (90 parts per billion or ppb) are so lax that virtually any fish-oil product in the supermarket is going to exceed them. Of course, if you want to heal the brain, then I would recommend looking for the purest fish oil you can find. If you are even considering using fish oil, make sure that the levels of total PCBs are less than 5 ppb. This is 18 times lower than the international standard. Using this more rigorous criterion of purity, your choices become very limited. Furthermore, PCB levels will vary from lot to lot. So you want to make sure that the lot you are actually using contains less than 5 ppb. Go to the product’s website or call the manufacturer. If the manufacturers can’t supply that data, it means they don’t know. If they said it is pure, then they mean it might pass the very lax international standards. Here’s a good rule about fish oils: Trust but always verify. PCB testing is expensive but so is saving a brain. Of course, if you don’t care about potential PCB accumulation in the brain, then use the cheapest fish-oil product you can find.

Potency

You are going to have to use a lot of fish oil to put out the inflammation in the brain and to rebuild it. Therefore, the potency of the fish oil counts. I would never recommend any fish-oil product containing any less than 60% EPA and DHA. Usually the higher the potency of the fish oil, the higher the purity, but not always. Removal of PCBs is very different than increasing omega-3 fatty acid potency. I have tested many high-potency fish oils that also have high PCB levels. Likewise, the omega-3 fatty acids levels will vary from lot to lot. Before you use any omega-3 fatty-acid product, ask for the potency of that particular lot. If company representatives can’t provide it or say it meets their standards, then it means they don’t really know.

The fish oil needs to contain both EPA and DHA. EPA puts out the inflammation in the brain, and DHA helps rebuild the brain. You need both. I usually recommend a 2:1 ratio of EPA to DHA as that is the ratio I have used for several years with great success.

Omega-3 fatty acids are prone to oxidation, which leads to rancidity. The rancidity comes from breakdown products of the fatty acids into aldehydes and ketones that can cause damage to the DNA. That’s why there is an international rancidity standard (called total oxidation or TOTOX) that governs all edible oil trading in the world. Before you use any fish oil product, ask for the TOTOX levels of the finished product (not the raw materials). If it is less than 26 meq/kg (the upper limit for an edible oil), then it is OK to use. If not, don’t even consider it.

Amounts

Even if you if you have a high-quality fish-oil product, you are going to need a lot for brain injuries. This will usually be in the range of 10-15 grams of EPA and DHA per day. That’s why you need the high-purity and high-potency fish oil. Because of the high amounts, it will have to be given in a liquid format. Why the high doses? Because you have to put out the fire in the brain before you can rebuild it.

The levels of fish oil needed are based on testing, not guessing. The best test for the levels of fish oil required is the ratio of two fatty acids in the blood. One is arachidonic acid (AA), and the other is EPA. Why this is important is because AA causes inflammation, and EPA reverses inflammation. You measure the levels of AA and EPA using a simple finger-stick blood test. The AA/EPA ratio is not a standard clinical test, but it has been in medical research for nearly 30 years, starting first at Harvard Medical School (3). The AA/EPA ratio will tell you how much a pure fish oil product you need as you want the AA/EPA ratio to be in the range of 1.5 to 3. If the AA/EPA ratio is higher than 3, you will need more fish oil. If AA/EPA is less than 1.5, you will need less fish oil. Maintaining the AA/EPA between 1.5 and 3 addresses the largest concern of using high-dose fish oil, which is potential bleeding. I chose an AA/EPA ratio of 1.5 as my lower limit since that is what it is in the Japanese population, and they don’t bleed to death (4-11).

The most inexpensive test for the AA/EPA ratio can be found at www.zonediagnostics.com.

Why drugs don’t work, and fish oil does

With severe brain trauma, the usual response of the physician is “we just have to wait”. The reason why is because there are no drugs that can cross the blood-brain barrier to put out the inflammation in the brain. That is not true with omega-3 fatty acids. They can easily enter the brain if there are high enough levels in the blood. What is the correct level in the blood? The AA/EPA ratio will tell you. Not only should the AA/EPA ratio be between 1.5 and 3, but also the EPA levels should be greater than 4% of the total fatty acids in the blood.

What Else?

When using high levels of fish oil even if it is pure and potent, you still have to emulsify it to reduce the size of oil droplets for better absorption. One of the best methods to emulsify liquid fish oil is to mix it with either a seaweed or an aloe vera product to reduce the size of the oil droplets to increase the absorption into the blood.

You also have to provide extra anti-oxidant protection to protect the omega-3 fatty acids from oxidation. The best way is using polyphenols to be mixed with the fish oil before administration. Adding extra virgin olive oil is a good choice. Adding highly purified polyphenol extracts to the liquid fish oil is a better choice.

What to expect

Each case is different. Based on my experience if you are using the correct amount of omega-3 fatty acids, you should see the beginnings of a response within 60 days. In Grant’s case, it was two days. If you do, then continue the same level of fish oil since putting out the inflammatory fire is only the first step of the process. The next step is rebuilding the brain. I would suggest monitoring the AA/EPA ratio every 30 days for the first 60 days and then every 60 days thereafter to make sure you are giving the right amount of fish oil.

Most importantly, this is not a Mr. Wizard home experiment. You should always be working with your physicians, not against them. They will also need education in the use and safety of high-dose fish oil, but this short summary is a good start.

Don’t expect any reimbursement from your insurance company for the use of the fish oil or AA/EPA testing. It may seem expensive, but compared to the human suffering of not trying to rebuild the brain, the costs of both the fish oil and AA/EPA testing are minor. I would also consider using flexible- spending health-care accounts if you have access to them to lower the overall cost, since they are based on pre-tax income.

Taking fish oil and following an anti-inflammatory diet is key

One of the reasons for Grant Virgin’s rapid progress was the fact that he was already taking moderate doses of fish oil for a medical condition. This meant he already had some reserve capacity in the body and the brain to reduce the inflammatory burden caused by a hit-and-run accident. You never know when brain trauma will occur. Maintaining a relatively low AA/EPA ratio in the blood is your best insurance policy for protection against future brain trauma if it does strike. You don’t have to be as aggressive as in the treatment phase, but aim for keeping the AA/EPA ratio between 5 and 10 in the blood. For comparison, the average American has an AA/EPA ratio of 20 (12). When dealing with brain trauma, an ounce of prevention is worth pounds of cure.

Finally, to accelerate the healing and rebuilding of the brain, you want to be following an anti-inflammatory diet (13-15). An anti-inflammatory diet is one that reduces the production of AA that drives inflammation in the brain. The less AA you have in the blood, the less AA gets into the brain. Try to keep the AA level in the blood to less than 9% of the total fatty acids. This takes more work than simply giving fish oil, but the more you reduce the levels of AA in the blood, the less high-dose fish you will need to maintain the AA/EPA ratio required to accelerate the healing and rebuilding process in the brain.

References

  1. Roberts L, Bailes J, Dedhia H, Zikos A, Singh A, McDowell D, Failinger C, Biundo R, Petrick J, and Carpenter J. “Surviving a mine explosion.” J Am Coll Surg 207:276-283 (2008)
  2. Sears B, Bailes J, and Asselin B. “Therapeutic use of high-dose omega-3 fatty acids to treat comatose patients with severe brain injury.” PhamaNutrition 1: 86-89 (2013)
  3. Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JW, Cannon JG, Rogers TS, Klempner MS, Weber PC, Schaefer EJ, Wolff SM, and Dinarello CA. “The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells.” N Engl J Med 320:265-271 (1989)
  4. Swails WS, Bell SJ, Bistrian BR, Lewis EJ, Pfister D, Forse RA, Kelly S, Blackburn GL. “Fish-oil-containing diet and platelet aggregation.” Nutrition 9:211-217 (1993)
  5. Parkinson AJ, Cruz AL, Heyward WL, Bulkow LR, Hall D, Barstaed L, and Connor WE. “Elevated concentrations of plasma omega-3 polyunsaturated fatty acids among Alaskan Eskimos”. Am J Clin Nutr 59:384-388 (1994)
  6. Eritsland J, Arnesen H, Seljeflot I, andKierulf P. “Long-term effects of n-3 polyunsaturated fatty acids on haemostatic variables and bleeding episodes in patients with coronary artery disease.” Blood Coagul Fibrinolysis 6:17-22 (1995)
  7. Watson PD, Joy PS, Nkonde C, Hessen SE, and Karalis DG.
    Comparison of bleeding complications with omega-3 fatty acids + aspirin + clopidogrel–versus–aspirin + clopidogrel in patients with cardiovascular disease. Am J Cardiol 104:1052-1054 (2009)
  8. Salisbury AC, Harris WS, Amin AP, Reid KJ, O’Keefe JH, and Spertus JA.
    “Relation between red blood cell omega-3 fatty acid index and bleeding during acute myocardial infarction.” Am J Cardiol 109:13-18 (2012)
  9. Larson MK, Ashmore JH, Harris KA, Vogelaar JL, Pottala JV, Sprehe M, and Harris WS. “Effects of omega-3 acid ethyl esters and aspirin, alone and in combination, on platelet function in healthy subjects.” Thromb Haemost 100:634-641 (2008)
  10. Harris WS. “Expert opinion: omega-3 fatty acids and bleeding-cause for concern?” Am J Cardiol 99:44C-46C (2007)
  11. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S,Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, and Shirato K. “Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis.” Lancet 369: 1090-1098 (2007)
  12. Harris WS, Pottala JV, Varvel SA, Borowski JJ, Ward JN, and McConnell JP. “Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: observations from 160,000 patients.” Prostaglandins Leukot Essent Fatty Acids 88:257-263 (2013)
  13. Sears B. The Zone. Regan Books. New York, NY (1995)
  14. Sears B. The OmegaRx Zone. Regan Books. New York, NY (2002)
  15. Sears B. The Anti-inflammation Zone. Regan Books. New York, NY (2005)

More Cholesterol Madness

This week the American Heart Association announced a doubling down on its bet on cholesterol and heart disease.  It certainly wasn’t because there was a sudden epidemic of heart disease, because death rates have been falling since 1970 (20 years before statins were introduced).  Nor has there been any new clinical data showing the benefits of lowering cholesterol levels. Although for the last 20 years the use of statins has been said to be the end of the scourge of heart disease, it still remains the number-one killer of Americans.

Furthermore, these newest guidelines essentially recommend that not only should more Americans be put on statins, but they should also start at the highest dose possible.  In actuality, this “dose” is where the toxic effects begin to appear.  What are the toxic effects?  They include muscle weakness, reduction in cardiovascular fitness, increased diabetes, and memory loss.  Whatever happened to the Hippocratic oath of doing the patient no harm?

    All of this might be justified if there were any indication that cholesterol is the driving force behind heart disease.  Unfortunately, the facts simply don’t support the hype.  Remember, before statins arrived in 1994, saturated fat was the villain in heart disease, not cholesterol (1).  Yet in 2010, Harvard Medical School published epidemiological studies that made the connection between saturated fat and heart disease very tenuous at best (2).

So what if cholesterol is not the cause of heart disease?

Actually, there is another drug that also reduces mortality from heart disease, yet doesn’t lower cholesterol.  It’s called an aspirin.  What aspirin does do is to reduce inflammation.

The inflammation versus cholesterol battle for what causes heart disease has been raging for decades.  What gave the cholesterol boys the upper hand was it is easy to measure blood cholesterol.  With the advent of statins, it was simple for doctors to repeat the drug company mantra to their patients, “If your cholesterol levels are high, you are going to die”.  Great marketing, but poor science.

Just to illustrate the importance of reducing inflammation versus LDL cholesterol on mortality from heart disease, we can look at the heart disease mortality rates in 2004 both Japan and the United States (3).  The Japanese had a death rate from heart disease that was 71% lower than Americans, although their LDL cholesterol levels were virtually the same.  What was different between the two populations were their levels of inflammation as measured by the AA/EPA ratio.  The Japanese levels of inflammation were 76% lower than Americans.  These changes are shown in the following figure.

Figure 1.  Per Cent Differences Between Japanese and Americans

Cholseterol-Madness-Figure-1

Even without advanced statistics, I think you can see there is a much better correlation between the reduction of the AA/EPA ratio between the Japanese and Americans relative to the reduction in mortality from heart disease than there is between differences in LDL cholesterol levels in Japanese and Americans relative to mortality from heart disease.

    The only way to explain this new madness for lowering cholesterol is it is a last-gasp effort of the cardiologists, who have spent their entire careers on the cholesterol bandwagon and will defend their faith to the death.  Unfortunately, it may be their patients who will have to pay the ultimate price for not being told the real enemy is inflammation.

 

References

1.  American Heart Association.  “Dietary guidelines for healthy American adults.  A statement for physicians and health professionals by the Nutrition Committee, American Heart Association.”  Circulation 77: 721-724A (1988)

2.  Siri-Tarino PW, Sun Q, Hu FB, and Krauss RM.  “Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease.”  Am J Clin Nutr 91:535-546 (2010)

3.  Sekikawa A, Steingrimosdotir L, Ueshima H, Shin C, Curb JD, Evans RW, Hauksottir AM, Kadota A, Choo J, Masaki K, Thorsson B, Launer LJ, Farcia ME, Maegawa H, Willco BJ, Eirksdottir G, Fujyoshi A, Miura K, Harris TB, Kuller LH, and Gudnason V.  “Serum levels of marine-derived n-3 fatty acids in Icelanders, Japanes, Korean, and Americans.”  Prostaglandins Leukotrienes and Essential Fatty Acid 87:11-16 (2007)

YWikipedia: Y (named wye plural wyes) is the twenty-fifth letter in the ISO basic Latin alphabet (next to last letter) and represents either a vowel or a consonant in English.

Harvard explains why people regain weight with the Atkins diet

A study from Harvard Medical School explains that even though people can lose weight on a ketogenic diet, all lost weight usually rapidly returns.

Ketogenic diets have been recommended for decades for rapid weight loss. The most famous is the Atkins diet. Ketogenic diets are based on high-protein and very low-carbohydrate intake. For the past 40 years such diets have been routinely used in America for weight loss, yet America remains in the midst of a growing epidemic of obesity. While ketogenic diets can induce initial weight loss, all lost weight usually rapidly returns, resulting in more weight (and even more fat) than when the person started the ketogenic diet.

For many years it was thought that such weight regain was due to poor dietary compliance. Now Harvard Medical School in an article in the June 27, 2012, issue of the Journal of the American Medical Association shows the reason for weight regain is more ominous than simple dietary non-compliance. In carefully controlled studies Harvard researchers demonstrated that on a ketogenic diet the levels of the hormone cortisol increase by 18%, and the levels of active thyroid hormone (T3) control metabolism decrease by 12% (1).

The effect of increased cortisol is to cause rapid fat accumulation, as any patient who has ever used prescription cortisol-like drugs knows. It also causes depression of the immune system, loss of memory, and thinning of the skin. These are also hallmarks of the acceleration of the aging process. Furthermore, the lowering of the active form of the thyroid hormone slows down the metabolism, making even seemingly small increases in calorie intake result in increased body fat accumulation. Besides setting you up to regain all the lost weight, the Atkins diet apparently also increases the rate of aging.

However, many people seem willing to continue to try such ketogenic diets in hopes of losing weight quickly. Yet highly controlled studies I published in the world’s most prestigious nutrition journal in world more than six years ago demonstrated that is simply not a true statement (2). In this study either a ketogenic diet (the Atkins diet) or a non-ketogenic diet (the Zone Diet) were compared in obese individuals. For the first six weeks all meals for both groups were prepared in a metabolic kitchen at Arizona State University (in essence treating subjects like lab rats). Both diets contained an equal number of calories.

When it came to weight loss, the subjects following the Zone Diet actually lost slightly more weight than as those on the ketogenic diet during the initial six-week period as shown in Figure 1.

Figure 1. Weight Loss (Zone Diet in open circles, Atkins diet in black squares)

Relative to fat loss on the non-ketogenic Zone Diet, their loss of body fat was again superior to the Atkins diet as shown in Figure 2. Fat loss is far more important than weight loss since all the health benefits from weight loss come from the loss of excess body fat; not from the loss of retained water or loss of muscle mass.

Figure 2. Fat Loss (Zone Diet in open circles, Atkins diet in black squares)

When the subjects continued on the respective diets for another four weeks (but now preparing meals on their own), those subjects on the non-ketogenic Zone Diet continued to lose even more weight and body fat, whereas those on the ketogenic Atkins diet did not. They had reached a plateau. The new research from Harvard Medical explains why.

One of the major problems in following a calorie-restricted diet is lack of energy. In this same study, the subjects on the Zone Diet demonstrated improved daily energy compared to those on the Atkins diet. In another publication using the same subjects, we also demonstrated that those subjects following the Zone Diet had greater performance in endurance testing compared to those following the ketogenic Atkins diet (3).

Figure 3. Energy levels (Zone Diet in open circles, Atkins diet in black squares)

For the past 40 years, ketogenic diets (like the Atkins diet) have failed to treat obesity in America. That is why one relies upon science, not hype, to determine which is the best diet to lose weight (and really body fat), keep it off, and increase energy. Continuing research from Harvard Medical School since 1999 demonstrates that the Zone Diet is the best dietary program to accomplish both goals (1,4-7). And the one thing Harvard will always tell you is that they are never wrong.

References

  1. Ebbeling CB, Swain JF, Feldman HA, Wong WA, Hachey DL, Garcia-Logo E, and Ludwig DD. “Effects of dietary composition on energy expenditure during weight loss maintenance.” JAMA 307: 267-2634 (2012)
  2. Johnston, C.S., Tjonn, S., Swan, P.D., White A., Hutchins H., and Sears B. “Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets.” Am J Clin Nutr 83: 1055-1061 (2006)
  3. White AM, Johnston CS, Swan PD, Tjonn SL, and Sears B. “Blood ketones are directly related to fatigue and perceived effort during exercise in overweight adults adhering to low-carbohydrate diets for weight loss: A pilot study.” J Am Diet Assoc 107: 1792-1796 (2007)
  4. Ludwig, DS, Majzoub AJ, Al-Zahrani A, Dallal GE, Blanco I, and Roberts SB. “High glycemic index foods, overeating, and obesity.” Pediatrics 103: e26 (1999)
  5. Agus MSD, Swain JF, Larson CL, Eckert EA, and Ludwig DS. “Dietary composition and physiologic adaptations to energy restriction.” Am J Clin Nutr 71:901–907 (2000)
  6. Pereira MA, Swain J, Goldfine AB, Rifai N, and Ludwig DS. “Effect of low-glycemic diet on resting energy expenditure and heart disease risk factors during weight loss.” JAMA. 292: 2482-2490 (2004)
  7. Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, and Ludwig DS. “Effects of a low–glycemic load vs. low-fat diet in obese young adults”. JAMA 297: 2092-2102 (2007)

Anxiety and Omega-3 Fatty Acids

Anxiety is one of most the common neurological disorders, but it also is one of the most difficult to understand. Simply stated, anxiety is an apprehension of the future, especially about an upcoming challenging task. This is normal. What is not normal is when the reaction is significantly out of proportion to what might be expected. Over the years, a number of specific terms, such as generalized anxiety disorder, panic disorder, phobia, social anxiety disorder, obsessive-compulsive disorder, post-traumatic stress disorder, and separation anxiety disorder have emerged in an attempt to better categorize general anxiety. Any way you describe anxiety, it is a big problem with nearly 20% of Americans suffering from it, thus making anxiety the largest neurological disorder in the United States (1).

If anxiety is worrying about the future, then it has a fellow traveler, depression. Depression can be viewed as an over-reaction about regret associated with past events. Not surprisingly, almost an equal number of Americans suffer from this condition. This leads to the question: Is there a linkage between the two conditions? I believe the answer is yes and it may be caused by radical changes in the American diet in the past 40 years. These changes have resulted in what I term the Perfect Nutritional Storm (2). The result is an increase in the levels of inflammation throughout the body and particularly in the brain.

The brain is incredibly sensitive to inflammation, not the type you can feel but the type of inflammation that is below the perception of pain. I term this cellular inflammation. What makes this type of inflammation so disruptive is that it causes a breakdown in signaling between cells. What causes cellular inflammation is an increase in the omega-6 fatty acid known as arachidonic acid (AA). From this fatty acid comes a wide range of inflammatory hormones known as eicosanoids that are the usual suspects when it comes to inflammation. This is why anti-inflammatory drugs (aspirin, non-steroid anti-inflammatories, COX-2 inhibitions and corticosteroids) all have a single mode of action—to inhibit the formation of these inflammatory eicosanoids. These drugs, however, can’t cross the blood-brain barrier that isolates the brain from a lot of noxious materials in the blood stream. So when the brain becomes inflamed, its only protection is adequate levels of anti-inflammatory omega-3 fatty acids. But what happens when the levels of omega-3 fatty acids are low in the brain? The answer is increased neuro-inflammation and continual disruption of signaling between nerves.

There are two omega-3 fatty acids in the brain. The first is called docosahexaenoic acid or DHA. This is primarily a structural component for the brain. The other is called eicosapentaenoic acid or EPA. This is the primary anti-inflammatory omega-3 fatty acid for the brain. So if the levels of EPA are low in the blood, they are going to be low in the brain. To further complicate the matter, the lifetime of EPA in the brain is very limited (3,4). This means you have to have a constant supply in the blood stream to keep neuro-inflammation under control.

It is known from work with uni-polar and bi-polar depressed patients, that high-dose fish oil rich in EPA has remarkable benefits (5,6). On the other hand, supplementing the diet with oils rich in DHA have virtually no effects (7).

Since anxiety has a significant co-morbidity with depression, the obvious question becomes is it possible that high levels of EPA can reduce anxiety? The answer appears to be yes (8), according to a study conducted in 2008 using substance abusers. It is known that increased anxiety is one of the primary reasons why substance abusers and alcoholics tend to relapse (9,10). When these patients were given a high dose of EPA (greater than 2 grams of EPA per day), there was a statistically significant reduction in anxiety compared to those receiving a placebo. More importantly, the degree of anxiety reduced was highly correlated to the decrease of the ratio of AA to EPA in the blood (8). In other studies with normal individuals without clinical depression or anxiety, increased intake of EPA improved their ability to handle stress and generated significant improvements in mood (11-13). It may be that depression and anxiety are simply two sides of the same coin of increased cellular inflammation in the brain. Even for “normal” individuals, high dose EPA seems to make them happier and better able to handle stress.

So let’s go back to an earlier question and ask about the dietary changes in the American diet that may be factors in the growing prevalence of both depression and anxiety. As I outline in my book Toxic Fat, it is probably due to a growing imbalance of AA and EPA in our diets (2). What causes AA to increase is a combination of increased consumption of vegetable oils rich in omega-6 fatty acids coupled with an increase in the consumption of refined carbohydrates that generate insulin. When excess omega-6 fatty acids interact with increased insulin, you get a surge of AA production. At the same time, our consumption of fish rich in EPA has decreased. The end result is an increasing AA/EPA ratio in the blood, which means a corresponding increase in the same AA/EPA ratio in the brain creating more cellular inflammation.

Cutting back vegetable oil and refined carbohydrate intake is difficult since they are now the most inexpensive source of calories. Not surprisingly, they are key ingredients for virtually every processed food product. So if changing your diet is too hard, then consider eating more fish to get adequate levels of EPA. Of course, the question is how much fish? If we use a daily intake level of 2 grams of EPA per day that was used the successful trials of using omega-3 fatty acids reduce anxiety, then this would translate into consuming 14 pounds of cod per day. If you prefer a more fatty fish like salmon, then you would only need about 2 pounds per day to get 2 grams of EPA. The Japanese are able to reach that level because they are the largest consumers of fish in the world. These are highly unlikely dietary changes for most Americans. However, it has been demonstrated that following a strict anti-inflammatory diet coupled with purified fish oil supplements can generate an AA/EPA ratio similar to that found in the Japanese population (11).

There is simply no easy way out of this problem created by the Perfect Nutritional Storm, which will only intensify with each succeeding generation due to the insidious effect of cellular inflammation on fetal programming in the womb. Unfortunately for most Americans this will require a dietary change of immense proportions. This probably means that Valium and other anti-anxiety medications are here to stay.

References

  1. Kessler RC, Chiu WT, Demler O, Merikangas KR, and Walters EE. “Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication”. Arch Gen Psychiatry 62:617–627 (2005)
  2. Sears B. Toxic Fat. Thomas Nelson. Nashville, TN (2008)
  3. Chen CT, Liu Z, Ouellet M, Calon F, and Bazinet RP. “Rapid beta-oxidation of eicosapentaenoic acid in mouse brain: an in situ study.” Prostaglandins Leukot Essent Fatty Acids 80:157-163 (2009)
  4. Chen CT, Liu Z, and Bazinet RP. “Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study.” J Neurochem 116:363-373 (2011)
  5. Nemets B, Stahl Z, and Belmaker RH. “Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder.” Am J Psychiatry 159:477-479 (2002)
  6. Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E, Cress KK, and Marangell LB. “Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial.” Arch Gen Psychiatry 56:407-412 (1999)
  7. Marangell LB, Martinez JM, Zboyan HA, Kertz B, Kim HF, and Puryear LJ. “A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression.” Am J Psychiatry 160:996-998 (2003)
  8. Buydens-Branchey L, Branchey M, and Hibbeln JR. “Associations between increases in plasma n-3 polyunsaturated fatty acids following supplementation and decreases in anger and anxiety in substance abusers.” Prog Neuropsychopharmacol Biol Psychiatry 32:568-575 (2008)
  9. Willinger U, Lenzinger E, Hornik K, Fischer G, Schonbeck G, Aschauer HN, and Meszaros K. “Anxiety as a predictor of relapse in detoxified alcohol-dependent patients.” Alcohol and Alcoholism 37:609-612 (2002)
  10. Kushner MG, Abrams K, Thuras P, Hanson KL, Brekke M, and Sletten S. “Follow-up study of anxiety disorder and alcohol dependence in comorbid alcoholism treatment patients.” Alcohol Clin Exp Res 29:1432-1443 (2005)
  11. Fontani G, Corradeschi F, Felici A, Alfatti F, Bugarini R, Fiaschi AI, Cerretani D, Montorfano G, Rizzo AM, and Berra B. “Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with Omega-3 polyunsaturated fatty acids.” Eur J Clin Invest 35:499-507 (2005)
  12. Fontani G, Corradeschi F, Felici A, Alfatti F, Migliorini S, and Lodi L. “Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. “Eur J Clin Invest 35:691-699 (2005)
  13. Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, and Glaser R. “Omega-3 supplementation lowers inflammation and anxiety in medical students: A randomized controlled trial.” Brain Behav Immun 25:1725-1734 (2011)

What is Cellular Inflammation?

People (including virtually all physicians) are constantly confused what cellular inflammation is. So I decided to take the opportunity to explain the concept in more detail.

There are two types of inflammation. The first type is classical inflammation, which generates the inflammatory response we associate with pain such as, heat, redness, swelling, pain, and eventually loss of organ function. The other type is cellular inflammation, which is below the perception of pain. Cellular inflammation is the initiating cause of chronic disease because it disrupts hormonal signaling networks throughout the body.

Definition of Cellular Inflammation

The definition of cellular inflammation is increased activity of the gene transcription factor know as Nuclear Factor-kappaB (NF-κB). This is the gene transcription factor found in every cell, and it activates the inflammatory response of the innate immune system. Although the innate immune system is the most primitive part of our immune response, it has been resistant to study without recent breakthroughs in molecular biology. In fact, the 2011 Nobel Prize in Medicine was awarded for the earliest studies on the innate immune system and its implications in the development of chronic disease.

There are several extracellular events through which NF-κB can be activated by distinct mechanisms. These include microbial invasion recognized by toll-like receptors (TLR), generation of reactive oxygen species (ROS), cellular generation of inflammatory eicosanoids, and interaction with inflammatory cytokines via defined cell surface receptors. We also know that several of these initiating events are modulated by dietary factors. This also means that appropriate use of the diet can either turn on or turn off the activation of NF-κB. This new knowledge is the foundation of anti-inflammatory nutrition (1-3).

Understanding Cellular Inflammation

Although the innate immune system is exceptionally complex, it can be illustrated in a relatively simple diagram as shown below in Figure 1.

Figure 1. Simplified View of the Innate Immune System

Essential fatty acids are the most powerful modulators of NF-κB. In particular, the omega-6 fatty acid arachidonic acid (AA) activates NF-κB, whereas the omega-3 fatty acid eicosapentaenoic acid (EPA) does not (4). Recent work suggests that a subgroup of eicosanoids known as leukotrienes that are derived from AA may play a significant factor in NF-κB activation (5,6)

Extracellular inflammatory cytokines can also activate NF-κB by their interaction with specific receptors on the cell surface. The primary cytokine that activates NF-κB is tumor necrosis factor (TNF) (7). Toll-like receptors (TLR) are another starting point for the activation of NF-κB. In particular, TLR-4 is sensitive to dietary saturated fatty acids (8). The binding of saturated fatty acids to TLR-4 can be inhibited by omega-3 fatty acids such as EPA. Finally ROS either induced by ionizing radiation or by excess free radical formation are additional activators of NF-κB (9).

Anti-inflammatory Nutrition To Inhibit Cellular Inflammation

Anti-inflammatory nutrition is based on the ability of certain nutrients to reduce the activation of NF-κB.

The most effective way to lower the activation of NF-κB is to reduce the levels of AA in the target cell membrane thus reducing the formation of leukotrienes that can activate NF-κB. Having the patient follow an anti-inflammatory diet, such as the Zone Diet coupled with the simultaneous lowering omega-6 fatty acid intake are the primary dietary strategies to accomplish this goal (1-3).

Another effective dietary approach (and often easier for the patient to comply with) is the dietary supplementation with adequate levels of high-dose fish oil rich in omega-3 fatty acids, such as EPA and DHA. These omega-3 fatty acids taken at high enough levels will lower AA levels and increase EPA levels. This change of the AA/EPA ratio in the cell membrane will reduce the likelihood of the formation of inflammatory leukotrienes that can activate NF-κB. This is because leukotrienes derived from AA are pro-inflammatory, whereas those from EPA are non-inflammatory. The increased intake of omega-3 fatty acids is also a dietary approach that can activate the anti-inflammatory gene transcription factor PPAR-γ (10-12), decrease the formation of ROS (13) and decrease the binding of saturated fatty acids to TLR-4 (14). This illustrates the multi-functional roles that omega-3 fatty acids have in controlling cellular inflammation.

A third dietary approach is the adequate intake of dietary polyphenols. These are compounds that give fruits and vegetables their color. At high levels they are powerful anti-oxidants to reduce the generation of ROS (15). They can also inhibit the activation of NF-κB (16).

Finally, the least effective dietary strategy (but still useful) is the reduction of dietary saturated fat intake. This is because saturated fatty acids will cause the activation of the TLR-4 receptor in the cell membrane (8,14).

Obviously, the greater the number of these dietary strategies implemented by the patient, the greater the overall effect on reducing cellular inflammation.

Clinical Measurement of Cellular Inflammation

Since cellular inflammation is confined to the cell itself, there are few blood markers that can be used to directly measure the levels of systemic cellular inflammation in a cell. However, the AA/EPA ratio in the blood appears to be a precise and reproducible marker of the levels of the same ratio of these essential fatty acids in the cell membrane.

As described above, the leukotrienes derived from AA are powerful modulators of NF-κB. Thus a reduction in the AA/EPA ratio in the target cell membrane will lead to a reduced activation of NF-κB by decreased formation of inflammatory leukotrienes. The cell membrane is constantly being supplied by AA and EPA from the blood. Therefore the AA/EPA ratio in the blood becomes an excellent marker of the same ratio in the cell membrane (17). Currently the best and most reproducible marker of cellular inflammation is the AA/EPA ratio in the blood as it represents an upstream control point for the control of NF-κB activation.

The most commonly used diagnostic marker of inflammation is C-reactive protein (CRP). Unlike the AA/EPA ratio, CRP is a very distant downstream marker of past NF-κB activation. This is because one of inflammatory mediators expressed in the target cell is IL-6. It must eventually reach a high enough level in the blood to eventually interact with the liver or the fat cells to produce CRP. This makes CRP a more long-lived marker in the blood stream compared to the primary inflammatory gene products (IL-1, IL-6, TNF, and COX-2) released after the activation of NF-κB. As a consequence, CRP is easier to measure than the most immediate inflammatory products generated by NF-κB activation. However, easier doesn’t necessarily translate into better. In fact, an increase AA/EPA ratio in the target cell membrane often precedes any increase of C-reactive protein by several years. An elevated AA/EPA ratio indicates that NF-κB is at the tipping point and the cell is primed for increased genetic expression of a wide variety of inflammatory mediators. The measurement of CRP indicates that NF-κB has been activated for a considerable period of time and that cellular inflammation is now causing systemic damage.

Summary

I believe the future of medicine lies in the control of cellular inflammation. This is most effectively accomplished by the constant application of anti-inflammatory nutrition. The success of such dietary interventions can be measured clinically by the reduction of the AA/EPA ratio in the blood.

References

  1. Sears B. The Anti-Inflammation Zone. Regan Books. New York, NY (2005)
  2. Sears B. Toxic Fat. Thomas Nelson. Nashville, TN (2008)
  3. Sears B and Riccordi C. “Anti-inflammatory nutrition as a pharmacological approach to treat obesity.” J Obesity doi:10.1155/2011/431985 (2011)
  4. Camandola S, Leonarduzzi G,Musso T, Varesio L, Carini R, Scavazza A, Chiarpotto E, Baeuerle PA, and Poli G. “Nuclear factor kB is activated by arachidonic acid but not by eicosapentaenoic acid.” Biochem Biophys Res Commun 229:643-647 (1996)
  5. Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, and Miller YI. “12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice.” PLoS One 4:e7250 (2009)
  6. Chakrabarti SK, Cole BK, Wen Y, Keller SR, and Nadler JL. “12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes.” Obesity 17:1657-1663 (2009)
  7. Min JK, Kim YM, Kim SW, Kwon MC, Kong YY, Hwang IK, Won MH, Rho J, and Kwon YG. “TNF-related activation-induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells.” J Immunol 175: 531-540 (2005)
  8. Kim JJ and Sears DD. “TLR4 and Insulin Resistance.” Gastroenterol Res Pract doi:10./2010/212563 (2010)
  9. Bubici C, Papa S, Dean K, and Franzoso G. “Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance.” Oncogene 25: 6731-6748 (2006)
  10. Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC, Moorhead JF, and Varghese Z. “EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: Evidence for a PPAR-gamma-dependent mechanism.” Kidney Int 67: 867-874 (2005)
  11. Kawashima A, Harada T, Imada K, Yano T, and Mizuguchi K. “Eicosapentaenoic acid inhibits interleukin-6 production in interleukin-1beta-stimulated C6 glioma cells through peroxisome proliferator-activated receptor-gamma.” Prostaglandins LeukotEssent Fatty Acids 79: 59-65 (2008)
  12. Chambrier C, Bastard JP, Rieusset J, Chevillotte E, Bonnefont-Rousselot D, Therond P, Hainque B, Riou JP, Laville M, and Vidal H. “Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma.” Obes Res 10: 518-525 (2002)
  13. Mas E, Woodman RJ, Burke V, Puddey IB, Beilin LJ, Durand T, and Mori TA. “The omega-3 fatty acids EPA and DHA decrease plasma F(2)-isoprostanes.” Free Radic Res 44: 983-990 (2010)
  14. Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, and Hwang DH. “Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids.” J Lipid Res 44: 479-486 (2003)
  15. Crispo JA, Ansell DR, Piche M, Eibl JK, Khaper N, Ross GM, and Tai TC. “Protective effects of polyphenolic compounds on oxidative stress-induced cytotoxicity in PC12 cells.” Can J Physiol Pharmacol 88: 429-438 (2010)
  16. Romier B, Van De Walle J, During A, Larondelle Y, and Schneider YJ. “Modulation of signaling nuclear factor-kappaB activation pathway by polyphenols in human intestinal Caco-2 cells.” Br J Nutr 100: 542-551 (2008)
  17. Yee LD, Lester JL, Cole RM, Richardson JR, Hsu JC, Li Y, Lehman A, Belury MA, and Clinton SK. “Omega-3 fatty acid supplements in women at high risk of breast cancer have dose-dependent effects on breast adipose tissue fatty acid composition.” Am J Clin Nutr 91: 1185-1194 (2010)

“Biggest Loser” or best Zoner?

A few weeks ago I spoke at the American Society of Bariatric Physicians. Later in the day I heard an interesting lecture from the lead dietician for the TV series “The Biggest Loser”. In this lecture, she disclosed all the keys for successful weight loss in the individuals on the show.

The first was incredibly careful screening just like you would do for a clinical trial. This is to make sure you have incredibly motivated people, who aren’t depressed or have other existing medical conditions, such as heart disease. In other words, you stack the deck. Considering that after the first pilot show in 2004, there were 225,000 applications for the 2005 series, there is no problem in recruiting motivated people. Just to make sure the motivation is maintained, the contestants get paid while they are on the show in addition to the big payoff for the winner at the end of the series.

Next contestants are isolated in a “camp”. Consider this to be like a metabolic ward where they only have access to good food for the next 10 to 16 weeks. This means no white carbohydrates and no artificial sweeteners other than stevia and all the meals made for them.

According to the speaker, the real secret is that they are fed a Zonelike Diet with 45 percent of the calories coming carbohydrates (primarily non-starchy vegetables and fruits) with a very limited amount of whole grains, 30 percent of the calories from low-fat protein, and 25 percent from good fats, such as olive oil or nuts. The typical calorie intake for the females is 1,200 to 1,600 and for the males about 1,800-2,400. The typical 300-pound contestant will consume about 1,750 calories per day. Finally, you spread the balanced calories over three meals and two snacks during the day.

Of course, you never see the contestants eating their Zone meals and snacks or the dietician discussing nutrition with them because that makes for boring TV. So most of the time you see them being yelled at by their trainers. That makes for exciting TV. In fact. the more tears they shed by being intimidated, the better the ratings.

So what happens to them after they leave the show, no longer get paid, and are surrounded by their favorite foods? About 50 percent regain the lost weight. But the other 50 percent have found out that the Zone Diet isn’t that hard, and now they have a clear dietary plan for a lifetime without being yelled at by drill sergeant-like trainers.

Eat Less, Get Hungry

Telling an obese person simply to eat less rarely succeeds. Is it because they are weak-willed individuals or is there something more complex going on? New research indicates the latter. A new article in Cell Metabolism showed that during extreme calorie restriction, the levels of fatty acids begin to rapidly rise in the blood as the body begins breaking down stored fat for energy. These newly released fatty acids from the fat cells can then enter into the brain (the hypothalamus to be exact) and cause the self-digestion of cells in the hunger neurons (1). This self-digestion of the cells in the hunger neurons produces a rise in the very powerful hunger hormone (AgRP) from the same bundle of neurons. Not surprisingly, the urge to eat becomes almost overpowering. This begins to explain why very low calorie diets can cause rapid weight loss, but are rarely successful in keeping the weight off.

This is why very low calorie diets that promise quick weight loss invariably cause the rapid release of stored fatty acids that promotes constant hunger. This is clearly not a sustainable way to maintain long-term weight management.

Of course the question might be whether it is all fatty acids or just one that causes the problem of cellular death in the hunger neurons? I believe the answer comes back to the usual suspect, arachidonic acid (2). It has been known for 20 years that when you put obese individuals on a very low calorie diet there is a rapid increase in the levels of arachidonic acid levels in the blood (3). Arachidonic acid can easily cross the blood brain barrier and enter into the hypothalamus. Since arachidonic acid is a powerful promoter of cell death (4), increased concentrations inside the hypothalamus may be the primary accelerator of the death of the hunger neurons. Increased levels of arachidionic acid in the blood are also the underlying cause of insulin resistance because of its effect on the generation of cellular inflammation (2). So as you build up the levels of stored arachidonic acid in the fat cells, caused by the Perfect Nutritional Storm (2), you are almost ensuring constant hunger when you try to lose weight quickly by following very low calorie diets. To make matters even worse, as arachidonic acid levels also build up in the brain increasing the production of endocannabinoids (5). These are the hormones that give you the continual munchies (they are related to the active ingredient in marijuana).

So is there any good news in all of this research? Yes as long as you develop a lifetime dietary strategy for reducing arachidonic acid and the cellular inflammation it causes as well as following a reasonable low calorie diet that supplies adequate levels of fat to moderate the release of stored fatty acids from the fat cells. It means following an anti-inflammatory diet with adequate protein using low-glycemic load carbohydrates and fats very low in omega-6 fatty acids, but adequate in monounsaturated and omega-3 fats.

That’s why you never want to start any type of weight loss program without adding omega-3 fatty acids to counteract the released of stored arachidonic acid from the fat cells. Not only will these omega-3 fatty acids reduce the degradation of the hunger neurons thereby reducing the release of powerful hunger hormones during calorie restriction, but they will also inhibit the release of endocannabinoids in the brain (6). The combination of the two events will ensure weight loss without hunger and that’s sustainable.

References

  1. Kaushik S,Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S, Schwartz GJ, Cuervo AM, and Singh R. “Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance.” Cell Metabolism 14: 173-183 (2011)
  2. Sears B. Toxic Fat. Thomas Nelson. Nashville, TN (2008)
  3. Phinney SD, Davis PG, Johnson SB, and Holman RT. “Obesity and weight loss alter serum polyunsaturated lipids in humans.” Amer J Clin Nutr 53: 831-838 (1991)
  4. Pompeia C, Lima T, and Curi R. “Arachidonic acid cytotoxicity: can arachidonic acid be a physiological mediator of cell death?” Cell Biochemistry and Function 21:97-104 (2003)
  5. Kim J, Li Y, and Watkins BA. “Endocannabinoid signaling and energy metabolism: A target for dietary intervention.” Nutrition 27: 624-632 (2011)
  6. Oda E. “n-3 Fatty acids and the endocannabinoid system.” Am J Clin Nutr 85: 919 (2007)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Preventing obesity through prenatal nutrition

It is obvious that pediatric obesity is a growing problem. However, compared to adult obesity, it is a relatively new problem. In a new article to be published in the Journal of Adolescent Health, it is pointed out that while childhood obesity has increased some 300 percent since 1960, most of that increase only began in the mid 1990s (1). This is well after the beginning of the climb of adult obesity, which started in the 1980s. Why the lag time? I believe it may have been caused by the amplification of any genetic predisposition to obesity by prenatal programming in the womb. That means you had to have obese mothers whose own hormonal changes and diet were altering the fetal programming of their children, thus amplifying their likelihood for obesity after birth.

This possibility makes sense based on results from another recent article that demonstrates that the lower the omega-3 fatty acid status in the mother, the more likely the child would be obese by the age of 3 (2). In this particular study, researchers found that by age 3 about 10 percent of the children were already obese. What they also analyzed was even though virtually all the women were consuming very low levels of omega-3 fatty acids during pregnancy, the higher the levels of the omega-3 fatty acids in mother’s diet, or her blood, and especially in the blood from the umbilical cord to the fetus, the lower the levels of obesity in the child three years later after birth.

Of course, lower levels of omega-3 fatty acids usually indicate higher levels of omega-6 fatty acids, giving rise to an unbalanced ratio of omega-3 to omega-6 fatty acids. This is why the highest correlation with increased childhood obesity was found with an increasing ratio of arachidonic acid to EPA and DHA in the blood of the mother and also in the umbilical cord of the fetus. This makes perfect sense since it is known from animal studies that the higher the omega-6 to omega-3 ratio in the diet of the mother, the greater the obesity in the offspring (3-5).

So if you want to begin to decrease childhood obesity, it is probably best to start in the womb of the mother with appropriate prenatal nutrition using appropriate levels of omega-3 fatty acids. This would prevent the fetal programming of the unborn child that would lead to rapid accumulation of excess body fat after birth. I think this makes a lot more sense than telling obese children to “eat less and exercise more” after their genetic expression has been altered in the womb. And if this makes sense, then doesn’t it also strongly suggest that feeding children more omega-3 and less omega-6 fatty acids after birth will silence the activation of ancient genes that make them fat and keep them fat (6).

References

  1. Lee H, Lee D, Guo G, and Harris KM. “Trends in body mass index in adolescence and young adulthood in the United States: 1959-2002.” J Adolescent Heath DOI:10.1016/jadolheath2011.04.019 (2011)
  2. Donahue SMA, Rifas-Shiman SL, Gold DR, Jouni ZE, Gilman MW, and Oken E. “Prenatal fatty acid status and child adiposity at age 3.” Am J Clin Nutr 93: 780-788 (2011)
  3. Korotkova M, Gabrielsson BG, Holmang, A, Larrson BM, Hanson LA, and Strandvik B. “Gender-related long-term effects in adult rats by perinatal dietary ratio of n-6/n-3 fatty acids.” Am J Physiol Regul Integr Comp Physiol 288: R575-579 (2005)
  4. Ailhaud G, Guesnet P, and Cannane SC. “An emerging risk factor for obesity: does disequilibrium of polyunsaturated fatty acid metabolism contribute to excessive adipose tissue development?” Br J Nutr 100: 461-470 (2008)
  5. Massiera L, Barbry P, Guesnet P, Joly A, Luquet S, Moreihon-Brest C, Moshen-Kanson T, Amri E-Z, and Ailhaud G. “A western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations.” J Lipid Res 51: 2352-2361 (2010)
  6. Massiera Saint-Marc P, Seydoux J, Murata T, Kobayshi T, Narumiya S, Guesnet P, Amri E-Z, Negrel R, and Alhaud G. “Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern?’ J Lipid Res 44: 271-279 (2003)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Zone diet validation studies

Weight Loss

Any diet that restricts calories will result in equivalent weight loss. However, the same doesn’t hold true as to what the source of that weight loss is. Weight loss from either dehydration (such as ketogenic diets) or cannibalization of muscle and organ mass (such as low-protein diets) has no health benefits. Only when the weight loss source is from stored fat do you gain any health benefits. Here the Zone diet has been shown to be superior to all other diets in burning fat faster (1-4). It has been demonstrated that if a person has a high initial insulin response to a glucose challenge, then the Zone diet is also superior in weight loss (5,6). A recent study from the New England Journal of Medicine indicates that a diet composition similar to the Zone diet is superior to other compositions in preventing the regain of lost weight (7). This is probably caused by the increased satiety induced by the Zone diet compared to other diets (1,8,9).

Reduction of cellular inflammation

There is total agreement in the research literature that the Zone diet is superior in reducing cellular inflammation (10-12). Since cellular inflammation is the driving force for chronic disease, then this should be the ultimate goal of any diet. Call me crazy for thinking otherwise.

Heart disease

It is ironic that the Ornish diet is still considered one of the best diets for heart disease, since the published data indicates that twice as many people had fatal heart attacks on the Ornish diet compared to a control diet (13). This is definitely the case of don’t confuse me with the facts. On the other hand, diets with the same balance of protein, carbohydrate and fat as the Zone diet has have been shown to be superior in reducing cardiovascular risk factors, such as cholesterol and fasting insulin (14,15).

Diabetes

The first publication validating the benefits of the Zone diet in treating diabetes appeared in 1998 (16). Since that time there have been several other studies indicating the superiority of the Zone diet composition for reducing blood glucose levels (17-20). In 2005, the Joslin Diabetes Research Center at Harvard Medical School announced its new dietary guidelines for treating obesity and diabetes. These dietary guidelines were essentially identical to the Zone diet. Studies done at the Joslin Diabetes Research Center following those dietary guidelines confirm the efficacy of the Zone diet to reduce diabetic risk factors (21). If the Zone diet isn’t recommended for individuals with diabetes, then someone should tell Harvard.

Ease of use

The Zone diet simply requires balancing one-third of your plate with low-fat protein with the other two-thirds coming from fruits and vegetables (i.e. colorful carbohydrates). Then you add a dash (that’s a small amount) of heart-healthy monounsaturated fats. The Zone diet is based on a bell-shaped curve balancing low-fat protein and low-glycemic-index carbohydrates, not a particular magic number. If you balance the plate as described above using your hand and your eye, it will approximate 40 percent of the calories as carbohydrates, 30 percent of calories as protein, and 30 percent of the calories as fat. Furthermore, it was found in a recent Stanford University study that the Zone diet provided greater amounts of micronutrients on a calorie-restricted program than any other diet (22).

Eventually all dietary theories have to be analyzed in the crucible of experimentation to determine their validity. So far in the past 13 years since I wrote my first book, my concepts of anti-inflammatory nutrition still seem to be at the cutting edge.

References

  1. Skov AR, Toubro S, Ronn B, Holm L, and Astrup A. “Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity.” Int J Obes Relat Metab Disord 23: 528-536 (1999)
  2. Layman DK, Boileau RA, Erickson DJ, Painter JE, Shiue H, Sather C, and Christou DD. “A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women.” J Nutr 133: 411-417 (2003)
  3. Fontani G, Corradeschi F, Felici A, Alfatti F, Bugarini R, Fiaschi AI, Cerretani D, Montorfano G, Rizzo AM, and Berra B. “Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with omega-3 polyunsaturated fatty acids.” Eur J Clin Invest 35: 499-507 (2005)
  4. Layman DK, Evans EM, Erickson D, Seyler J, Weber J, Bagshaw D, Griel A, Psota T, and Kris-Etherton P. “A moderate-protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults.” J Nutr 139: 514-521 (2009)
  5. Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, and Ludwig DS. “Effects of a low-glycemic-load vs low-fat diet in obese young adults: a randomized trial.” JAMA 297: 2092-2102 (2007)
  6. Pittas AG, Das SK, Hajduk CL, Golden J, Saltzman E, Stark PC, Greenberg AS, and Roberts SB. “A low-glycemic-load diet facilitates greater weight loss in overweight adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE Trial.” Diabetes Care 28: 2939-2941 (2005)
  7. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Pihlsgard M, Stender S, Holst C, Saris WH, and Astrup A. “Diets with high or low protein content and glycemic index for weight-loss maintenance.” N Engl J Med 363: 2102-2113 (2010)
  8. Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, Roberts SB, Agus MS, Swain JF, Larson CL, and Eckert EA. “Dietary high-glycemic-index foods, overeating, and obesity.” Pediatrics 103: E26 (1999)
  9. Agus MS, Swain JF, Larson CL, Eckert EA, and Ludwig DS. “Dietary composition and physiologic adaptations to energy restriction.” Am J Clin Nutr 71: 901-907 (2000)
  10. Pereira MA, Swain J, Goldfine AB, Rifai N, and Ludwig DS. “Effects of a low-glycemic-load diet on resting energy expenditure and heart disease risk factors during weight loss.” JAMA 292: 2482-2490 (2004)
  11. Pittas AG, Roberts SB, Das SK, Gilhooly CH, Saltzman E, Golden J, Stark PC, and Greenberg AS. “The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss.” Obesity 14: 2200-2209 (2006)
  12. Johnston CS, Tjonn SL, Swan PD, White A, Hutchins H, and Sears B. “Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets.” Am J Clin Nutr 83: 1055-1061 (2006)
  13. Ornish D, Scherwitz LW, Billings JH, Brown SE, Gould KL, Merritt TA, Sparler S, Armstrong WT, Ports TA, Kirkeeide RL, Hogeboom C, and Brand RJ, “Intensive lifestyle changes for reversal of coronary heart disease.” JAMA 280: 2001-2007 (1998)
  14. Wolfe BM and Piche LA. “Replacement of carbohydrate by protein in a conventional-fat diet reduces cholesterol and triglyceride concentrations in healthy normolipidemic subjects.” Clin Invest Med 22: 140-1488 (1999)
  15. Dumesnil JG, Turgeon J, Tremblay A, Poirier P, Gilbert M, Gagnon L, St-Pierre S, Garneau C, Lemieux I, Pascot A, Bergeron J, and Despres JP. “Effect of a low-glycaemic index, low-fat, high-protein diet on the atherogenic metabolic risk profile of abdominally obese men.” Br J Nutr 86:557-568 (2001)
  16. Markovic TP, Campbell LV, Balasubramanian S, Jenkins AB, Fleury AC, Simons LA, and Chisholm DJ. “Beneficial effect on average lipid levels from energy restriction and fat loss in obese individuals with or without type 2 diabetes.” Diabetes Care 21: 695-700 (1998)
  17. Layman DK, Shiue H, Sather C, Erickson DJ, and Baum J. “Increased dietary protein modifies glucose and insulin homeostasis in adult women during weight loss.” J Nutr 133: 405-410 (2003)
  18. Gannon MC, Nuttall FQ, Saeed A, Jordan K, and Hoover H. “An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes.” Am J Clin Nutr 78: 734-741 (2003)
  19. Nuttall FQ, Gannon MC, Saeed A, Jordan K, and Hoover H. “The metabolic response of subjects with type 2 diabetes to a high-protein, weight-maintenance diet.” J Clin Endocrinol Metab 2003 88: 3577-3583 (2003)
  20. Gannon MC and Nuttall FQ. “Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition.” Nutr Metab (Lond) 3: 16 (2006)
  21. Hamdy O and Carver C. “The Why WAIT program: improving clinical outcomes through weight management in type 2 diabetes.” Curr Diab Rep 8: 413-420 (2008)
  22. Gardner CD, Kim S, Bersamin A, Dopler-Nelson M, Otten J, Oelrich B, and Cherin R. “Micronutrient quality of weight-loss diets that focus on macronutrients: results from the A TO Z study.” Am J Clin Nutr 92: 304-312 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

No excuses, eat your breakfast

Everyone knows that breakfast should be the most important meal of the day. Unfortunately, no one seems to have time to consume a real breakfast. If they do, then it’s usually a high-carbohydrate quasi-dessert that is so portable that they can eat it in the car. Although our world is becoming time-compressed, our biological rhythms are not. While you sleep, your body is literally digesting itself to provide energy for the brain. Much of this energy comes from digesting muscle mass to make glucose as the supplies of stored carbohydrate in the liver are rapidly depleted during the night forcing the body to start digesting muscle to supply enough glucose to the brain. Rebuilding lost muscle mass demands protein replenishment upon waking, and you aren’t going to get achieve that goal by eating a typical breakfast cereal and definitely not by drinking a cup of coffee as a stimulant.

It has been known for some time there is a strong relationship between skipping breakfast and obesity and subsequent establishment of poor dietary habits (1,2). Furthermore, the higher the protein content of the breakfast, the greater the satiety. That increase in satiety is correlated with increased PYY (the satiety hormone) levels in the blood (3). It was also demonstrated more than 10 years ago that giving a higher-protein breakfast meal to overweight adolescents resulted in significant appetite suppression. This lack of hunger is correlated with dramatic changes in the levels of insulin and glucagon in the blood (4).

Now a new study pre-published electronically indicates that a high-protein breakfast also dramatically alters brain function (5). Overweight adolescents who normally skipped breakfast were either given nothing for breakfast, a carbohydrate-rich breakfast, or a protein-rich breakfast for six days. On the seventh day of each breakfast cycle, they had a fMRI scan of their brains while being shown pictures of various palatable foods on a screen. After consuming the higher-protein breakfast for six days, there was far less activation in the regions of brain associated with food motivation and reward when shown the pictures of highly desirable foods.

One surprising observation from this study is the primary reason given by the overweight adolescent subjects for skipping breakfast was not that they were trying to lose weight, but they just lacked the time or were not feeling hungry upon waking. The lack of time in the morning is understandable because adolescents don’t get enough sleep anyway. However, the lack of hunger is probably due to the rise of hormonal levels early in the morning to rouse someone out of sleep. This acts like a powerful stimulant (and if you need more, then drink coffee). But the lack of breakfast means eating more snacks with higher calories throughout the day. Bottom line, even if you aren’t hungry at breakfast, just eat it anyway. But make sure it has adequate levels of protein if you want to lose weight.

References

  1. Deshmukh-Taskar PR, Nicklas TA, O’Neil CE, Keast DR, Radcliffe JD, and Cho S.
    “The relationship of breakfast skipping and type of breakfast consumption with nutrient intake and weight status in children and adolescents: the National Health and Nutrition Examination Survey 1999-2006.” J Am Diet Assoc 110: 869-878 (2010)
  2. Sjoberg A, Hallberg L, Hoglund D, and Hulthen L. “Meal pattern, food choice, nutrient intake and lifestyle factors in The Goteborg Adolescence Study.” Eur J Clin Nutr 57: 1569-1578 (2003)
  3. Leidy HJ and Racki EM. “The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents.” Int J Obes 34: 1125-1133 (2010)
  4. Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, and Roberts SB.
    “High glycemic-index foods, overeating, and obesity.” Pediatrics 103: E26 (1999)
  5. Leidy HJ, Lepping RJ, Savage CR, and Harris CT. “Neural responses to visual food stimuli after a normal vs. higher-protein breakfast in breakfast-skipping teens.” Obesity doi 10.1038./oby.2011.108 (2011)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.